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Surface critical behavior of driven diffusive systems with open boundaries

K. Oerding and H. K. Janssen
Institut für Theoretische Physik III, Heinrich-Heine-Universita¨t, D-40225 Düsseldorf, Germany

~Received 17 February 1998!

Using field theoretic renormalization group methods we study the critical behavior of a driven diffusive
system near a boundary perpendicular to the driving force. The boundary acts as a particle reservoir, which is
necessary to maintain the critical particle density in the bulk. The scaling behavior of correlation and response
functions is governed by a new exponenth1, which is related to the anomalous scaling dimension of the
chemical potential of the boundary. The new exponent and a universal amplitude ratio for the density profile
are calculated at first order ine552d. Some of our results are checked by computer simulations.
@S1063-651X~98!04308-6#

PACS number~s!: 05.40.1j, 05.70.Fh, 64.60.Ak, 66.30.Dn
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I. INTRODUCTION

In order to study the properties of thermodynamic syste
far from equilibrium physicists have been looking for simp
models that capture the main features of nonequilibrium p
nomena. Driven diffusive systems~DDS! introduced by Katz
et al. @1# to model fast ionic conductors are characterized
a particle conserving dynamics and a stationary state, w
does not satisfy detailed balance. Their study has led to
discovery of the connection between the validity of a cons
vation law and the existence of long-range spatial corre
tions in nonequilibrium steady states.

A simple microscopic realization of DDS is an Ising la
tice gas with attractive nearest neighbor interaction and
external driving forceE that prefers particle jumps in th
direction parallel toE @1,2#. The strength of the particle at
traction can be varied by a temperaturelike parameterT. Be-
low a critical valueTc(E) particles are separated in the st
tionary state into regions of high and low densities, wh
the interfaces are oriented parallel to the driving force~for
EÞ0). The phase transition atTc(E) is second order. For an
infinite driving force particle jumps in the direction antipa
allel to E are suppressed. In this case the phase trans
occurs atTc(`)'1.41Tc(0), whereTc(0) is the critical tem-
perature of the two dimensional Ising model@2#. The critical
behavior of this system has been extensively studied
Monte Carlo simulations and renormalization group meth
@3#. ~For a recent review see@4#.!

In most studies of DDS periodic boundary conditions
all directions are imposed to avoid surface effects. In t
case the particles are driven along a ring or torus. In m
realistic models particles are fed into the system at one
and extracted at the other. The asymmetric exclusion mo
@5# is a DDS with hard core repulsion~but without nearest
neighbor interaction, i.e.,T5`). The density profile in a
one-dimensional exclusion model with a particle source
a sink was investigated numerically by Krug@6#. His results
were later confirmed and generalized by exact calculati
@7–9#. An important result of these works is the ‘‘maximu
current principle,’’ which states the following: If the syste
is placed between two particle reservoirsA andB ~with the
respective densitiescA andcB with cA>cB) and the driving
force points fromA to B, then the bulk density takes th
PRE 581063-651X/98/58~2!/1446~9!/$15.00
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value cmax, which maximizes the currentj under the con-
straintcA>c>cB , i.e.,

j ~cmax!5max$ j ~c!ucA>c>cB%. ~1!

The maximum current density of an Ising lattice gas w
attractive particle-particle interaction equals its critical de
sity 1/2. The low temperature phase of this system with op
boundaries in two dimensions has been studied by Boalet al.
@10#.

In the present paper field theoretic renormalization gro
methods are employed to investigate the effects of o
boundaries on DDS at the critical pointTc(E). We assume
that a plane particle sourceA perpendicular to the driving
force is located at the left boundary of the system~coordinate
z50) and impose periodic boundary conditions in the tra
verse directions. The effect of the particle source is to s
press density fluctuations and to maintain a constant den
cA at z50. The particles are extracted from the system wh
they reach a sinkB located atz5L (L→`).

It is well known that in physical systems with long range
correlations the influence of a surface extends far into
bulk. The critical behavior near a boundary is governed
universal scaling laws with critical exponents that~in gen-
eral! cannot be expressed in terms of bulk exponents~a re-
view is given in Ref.@11#!. The applicability of renormaliza-
tion group methods to investigate both static@11–15# and
dynamic @16–18# surface universality classes is well esta
lished. Especially encouraging are the results of Ref.@19#
where this technique has been used to obtain an approxim
profile for one-dimensional DDS with open boundaries.
turned out that the profile calculated by renormalizati
group improved perturbation theory~at one-loop order! was
in good agreement with the exact result of Ref.@7#.

In the next section the semi-infinite extension of the fie
theoretic model for DDS at the critical point~introduced in
@3#! is presented. Above the upper critical dimensiondc55
of this model fluctuations around the mean field profile c
be treated by naive perturbation theory. The mean field p
file and Gaussian fluctuations ford.5 are considered in
some detail in Secs. III and IV since the results of this ana
sis remain qualitatively valid ford,5. In Sec. V the renor-
malization group is used to obtain the scaling behavior
1446 © 1998 The American Physical Society
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PRE 58 1447SURFACE CRITICAL BEHAVIOR OF DRIVEN . . .
Green functions and the density profile below five dime
sions. Section VII contains a discussion.

II. MODEL

The analysis in the present paper is based on the
theoretic model introduced by Janssen and Schmittmann@3#
to study the critical behavior of a diffusive system with
single conserved density subjected to an external driv
force. The model can be written in the form of the continu
equation

] ts1¹'• j'1] i j i50, ~2!

where s(r ,t)5c(r ,t)2 c̄ denotes the deviation of the con
centration from its average~bulk! value c̄, and j' and j i are
the respective components of the current perpendicular
parallel to the driving force. The explicit expression for t
current can be motivated by the following symmetry requi
ments @4#: ~i! isotropy with respect to the
(d21)-dimensional transverse subspace,~ii ! invariance of
the equation of motion under reversal of the driving for
(E↔2E) and particle-hole exchange~‘‘charge conjuga-
tion,’’ s↔2s), ~iii ! invariance under force reversal and r
flection in r i ~the coordinate parallel to the force!. A con-
tinuum model satisfying~i!–~iii ! describes, for instance, th
long time and large distance behavior of a driven Ising latt
gas at its critical density 1/2. Since the current in this syst
is at its maximum value for half filling one may use th
maximum current principle~in a system with open bound
aries! to adjust the bulk density to the critical value.

Keeping only terms that are consistent with the abo
conditions~i!–~iii ! and relevant or marginal in the renorma
ization group sense the current may be written~upon rescal-
ing of s) in the form

j'5¹'@2l~ts2D's!1z#, ~3a!

j i5E~s01s2s2!2lr] is, ~3b!

wherez is a Gaussian random force with the correlation

^z~r ,t !z~r 8,t8!&52ld~r2r 8!d~ t2t8!. ~3c!

The third order derivative in Eq.~3a! has to be kept becaus
the coefficientt of the first order derivative vanishes at th
critical point~transverse phase transition@3#!. The coefficient
s0 may be interpreted as the conductivity of the system
the maximum current densityc̄. Deviations fromc̄ due to
fluctuations or a nonconstant density profile decrease the
rent. This effect is modeled by the termEs2s2 in Eq. ~3b!.
The coefficientt measures the deviation of the temperatu
parameter from its critical value andr takes into account the
anisotropy of the diffusion constant. Even if the diffusio
constant is isotropic (r51) in the original Langevin equa
tion it becomes anisotropic under coarse graining.

For the subsequent field theoretic analysis it is conven
to recast the model in the form of the dynamic function
@20–24,3#
-
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Jb@ s̃,s#5E dtE
V
ddr $s̃] ts1l@~D's̃!~D's!

1t~¹'s̃!~¹'s!1r~] is̃!~] is!

1 1
2 g~] is̃!s22h] is̃2~¹'s̃!2#%, ~4!

wherelg;2Es2, and s̃ is a Martin-Siggia-Rose respons
field @25#. While the functional~4! allows us to calculate
response and correlation functions for an infinite bulk syst
the influence of the boundaries has to be modeled by a
tional surface contributions. If the boundary is perpendicu
to the driving force the region of integration in Eq.~4! is the
half spaceV5$(r' ,z)ur'PRd21,z>0%, and the surface is
defined byz50. Omitting irrelevant and redundant term
@19# the surface functional reads

Js@ s̃,s#5E dtE
]V

dd21r'l

3~cs̃s2 c̃s̃22c2s̃D's1 1
2 gss̃s22hss̃!. ~5!

Response and correlation functions can now be calculate
functional integration with the weight exp(2J), whereJ
5Jb1Js.

III. EQUATION OF MOTION AND MEAN FIELD
APPROXIMATION

An exact equation for the stationary profileF(z)
5^s(r ,t)& follows from the invariance of the generatin
functional

Z@ J̃,J; J̃1 ,J1#5E D@ s̃,s#exp@2Jb@ s̃,s#2J1@ s̃s ,ss#1~ J̃,s̃!

1~J,s!1~ J̃1 ,s̃s!1~J1 ,ss!# ~6!

under an infinitesimal shift of the fields̃. In Eq. ~6! ss(r')
5s(r' ,0) denotes the field at the surface and the abbre
tions

~ J̃,s̃!5E dtE
V
ddr J̃s̃ ~7!

and

~J1 ,ss!5E dtE
]V

dd21r'J1ss ~8!

have been used. The invariance ofZ@ J̃,J; J̃1 ,J1# implies the
equation of motion

] ts1l@~D'2t!D's2] i~r] is1 1
2 gs2!12D's̃#5 J̃,

~9!

which holds after insertion into averages. The invariance
Z@ J̃,J; J̃1 ,J1# under a shift of the surface fields̃s leads to the
equation of motion



o

la

io

pe
n

on

-

f
r

c-

on

e

her
s

t
rm

ary

ase

o-

1448 PRE 58K. OERDING AND H. K. JANSSEN
2r]ns2
g2gs

2
ss

21css22c̃s̃s2c2D'ss2hs1h5
1

l
J̃1 ,

~10!

which fixes the boundary condition. Taking the average
both sides of Eq.~9! for vanishing sourcesJ̃5J5 J̃15J1
50 one obtains

]z$r]zF~z!1 1
2 g@F~z!21C~z!#%50 ~11!

or, sinceFbulk50 due to the definition ofs,

F8~z!1
g

2r
@F~z!21C~z!2Cbulk#50. ~12!

The functionC(z)5^@s(r' ,z;t)2F(z)#2& describes density
fluctuations at the distancez from the surface andCbulk de-
notes its value forz→`.

In the mean field approximation one neglects the corre
tion functionC(z) and obtains for the profile

Fmf~z!5F0S 11
g

2r
F0zD 21

. ~13!

Dimensional analysis shows that the momentum dimens
of the coupling coefficientg is given by@g#5(52d)/2, and
the mean field approximation breaks down below the up
critical dimensiondc55. For d.5 corrections to the mea
field profile can be obtained by naı¨ve perturbation theory. At
lowest order it is sufficient to calculate the perturbati
C(z)2Cbulk in Eq. ~12! by a Gaussian approximation.

IV. CORRECTIONS TO THE MEAN FIELD PROFILE
FOR d>5

In the simplest case,Fmf(z)5F05hs50, the Fourier
transform~with respect tor' and t) of the Gaussian propa
gator

G~r' ,z,z8;t !5^s~r' ,z;t !s̃~0,z8;0!&0 ~14!

is given by@19#

Ĝq' ,v~z,z8!5
1

2lArk
Fe2kuz2z8u/Ar

1
k2c/Ar

k1c/Ar
e2k~z1z8!/ArG ~15!

with

k5S iv

l
1q'

2 ~t1q'
2 ! D 1/2

. ~16!

The parameterc occurring in the surface functionalJ1 and
in the propagator describes~for c.0) the suppression o
density fluctuations by the particle reservoir at the bounda
Since the momentum dimension ofc is one the asymptotic
scaling behavior is governed by the fixed pointc!5`. At
this fixed point the fieldss̃ ands satisfy the Dirichlet bound-
ary conditionss̃s5ss50.
n

-

n

r

y.

The Fourier transform of the Gaussian correlation fun
tion

C~r' ,z,z8;t !5^s~r' ,z;t !s~0,z8;0!&0 ~17!

at the Dirichlet fixed pointc!5` can be derived from the
Gaussian part of the dynamic functional. This calculati
yields

Ĉq' ,v~z,z8!52lq'
2 E

0

`

dz9Ĝq' ,v~z,z9!Ĝq' ,2v~z9,z8!

52
2lq'

2

v
Im@Ĝq' ,v~z,z8!#, ~18!

where Im@•••# denotes the imaginary part. The equal-tim
correlation function at the point (r' ,z) is given by

C~z!5E
q' ,v

Ĉq' ,v~z,z!

5Cbulk2
1

2Ar
~8pz/Ar!2~d21!/2 ~19!

with Cbulk;Ld21/Ar ~whereL is a cutoff wave number!.
We can now use Eqs.~12! and ~19! to compute the fluc-

tuation correction to the constant mean field profileFmf(z)
50. At first order ing we get

F [1]~z!52
g~8p!2~d21!/2

2~d23!r S z

Ar
D 2~d23!/2

. ~20!

One can easily check by dimensional analysis that hig
order corrections to the profile decay a
F [2n11](z)/F [1] (z);z2n(d25)/2 ~up to cutoff dependen
terms, which may change the amplitude of the leading te
proportional toz2(d23)/2).

In the limit c,hs→` ~with hs /c5:h1 fixed! the boundary
value of the mean field profile is given byF05h1. This
follows from Eqs.~10! and ~13!. For F0.0 the mean field
profile decays asymptotically asFmf(z).2r/(gz), and the
fluctuation correction;z2(d23)/2 can be neglected forz
→` (d.5). However, ifh1 is positive but small the profile
F(z) is negative forz,z, wherez5z(h1) is a crossover
length. The dependence of the profile on the bound
chemical potentialh1 is depicted qualitatively in Fig. 1. The
crossover lengthz tends to infinity forh1→01. To estimate
z for small h1 we equate the mean field profileFmf(z) with
the fluctuation termz2(d23)/2 and obtain

z;h1
22/~d23! ~21!

for h1→01, d.5.
In the language of semi-infinite magnetic systems the c

h15` corresponds to the normal transition andh150 is the
ordinary point. A length scale similar toz has already been
found in magnetic systems at the ordinary transition@26#.
There the length scalez characterizes the magnetization pr
file induced by a small magnetic surface field.
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V. RENORMALIZATION GROUP ANALYSIS

A. Renormalization

The naive perturbation theory described in the previo
section breaks down below the upper critical dimensiondc
55. The renormalization group allows us to improve t
perturbation expansion by a partial resummation.

Since the individual terms of the perturbation series c
tain for d5dc ultraviolet divergent integrals a regularizatio
prescription is required to obtain well-defined expressio
for the otherwise infinite integrals. Here we use the dim
sional regularization method~analytic continuation of the in-
tegrals as functions ofd). The remaining poles ine5dc
2d are then absorbed into reparametrizations of the coup
coefficients and the fields. In the field theory for the bu
model~without a surface! a renormalization of the paramete
r5ZrR is sufficient to cancel the ultraviolet divergences
every order of the perturbation theory@3#. At one-loop order
the renormalization factor is given by

Z512
u

e
1O~u2!, u5Aeg

2rR
23/2m2e, ~22!

wherem is an external momentum scale and the geometr
factor Ae5(3/4)(4p)2d/2G@(32e)/2#G(11e/2)/G(2
2e/2) has been introduced for convenience.~The indexR
indicates renormalized quantities.!

In order to investigate the scaling behavior of respo
functions near the boundary one has to calculate Green f
tions with insertions of the surface response fields̃s . Since
the Gaussian propagator~15! vanishes at the Dirichlet fixed
point c!5` it is necessary to go to higher orders inc21 to
obtain nontrivial results@11,12,27#. At first order inc21 the
propagator becomes~for z850)

Ĝq' ,v~z,0!5
1

c
r]z8Ĝq' ,v

~D ! ~z,z8!uz8501•••, ~23!

FIG. 1. Sketch of the profileF(z) for h15` ~dotted!, h1.0
finite ~solid curve!, andh150 ~dashed!. For h1,0 the density in
the bulk stays below its critical value indicated by the horizon
line.
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where Ĝq' ,v
(D) (z,z8) denotes the propagator~15! for c5`.

This shows that the leading order terms in an expansion
powers ofc21 can be studied in the framework of a fie
theory with Dirichlet boundary conditions after replacing
expectation values

s̃s→c21r]ns̃. ~24!

Analogously insertions of the surface fieldss have to be
replaced ~at leading order! by the normal derivative
c21r]ns.

Since a boundary breaks the translational invariance
the system it gives rise to new divergences in the pertur
tion series that are located at the surface@i.e., proportional to
d(z)#. These surface divergences have to be subtracted
appropriate counter terms added to the dynamic functionaJ.
In the Appendix it is shown that the required counter ter
have the form

Jbct@ s̃,s#5E dtE
V
ddr l@rR~Z21!~] is̃!~] is!

1rR
21/2Aegm2eAt2] is̃# ~25!

to remove bulk divergences and

Jsct@ s̃,s#5E dtE
]V

dd21r'l@rR
21/2Aegm2eK~r]n

2s̃!

1B~r]ns̃!ss1rR
21Aegm2eFt~r]ns̃!# ~26!

to cancele poles located at the surface. The renormalizat
parametersA, B, F, K are calculated at one-loop order wit
the result

A52
1

e
, B52

u

3e
, F52

4

3e
, K5

2

3e
. ~27!

The first term inJbct renormalizes the diffusion coefficientr.
The bulk counterterm proportional to] is̃ corresponds to a
renormalization of the bulk current@28#

h5hR2rR
21/2Aegm2eAt2. ~28!

The surface counterterms proportional to the redund
operators (r]ns̃)ss andr]n

2s̃ are equivalent to a multiplica

tive renormalization of the surface response fieldr]ns̃,

@r]ns̃#R5Z1
21/2r]ns̃. ~29!

For the semi-infinitef4 model~where the countertermr]n
2s̃

is absent! this has been shown in Ref.@29#. In the present
case both counterterms contribute to the renormalization
tor Z1. In Fig. 2 it is shown that an insertion of the operat
r]n

2s̃ into a Feynman diagram has the same effect

(r]ns̃)ss .
At one-loop order one gets

Z1
21/2512B2uK1O~u2!512

u

3e
1O~u2!. ~30!

l
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The relation between the redundant surface couplings~here
B, K) and Z1 can be extended to higher orders inu in a
similar way as in Ref.@29#. The last counter term inJsct that
couples tor]ns̃ renormalizes the surface chemical potent

h15Z1
21/2~@h1#R2rR

21Aegm2eFt!. ~31!

B. Scaling

With the renormalizations at hand we are in a position
determine the scaling behavior of Green functions and
density profile. For this purpose we need the anomalous
mentum dimensions of the fields and coupling coefficien
At the fixed pointu!5(2/3)e1O(e2) of the renormalization
group the couplingsr andh1 scale as

r; l 22h, h1;r21/4l ~d212h1!/2; l ~d211h2h1!/2, ~32!

wherel is a flow parameter andh andh1 are the respective
fixed point values of the Wilson functions

g~u!52
1

2
m

d ln r

dm U
0

5
1

2
u1O~u2!, ~33a!

g1~u!5m
d ln Z1

dm U
0

52
2

3
u1O~u2!. ~33b!

The derivatives are calculated at fixed bare parameters. F
this one finds

h5
52d

3
, h152

4e

9
1O~e2!, ~34!

where the expression forh holds at every order of thee
expansion@3#. The scaling dimensions of the coordinat
r'; l 21, r i;r1/2l 22; l 2(21h) and the bulk fields s̃
;r21/4l (d13)/2; l (d131h)/2, s;r21/4l (d21)/2; l (d211h)/2

may also be derived from the renormalization group eq
tions @3,4#.

The scaling form of the density profile fort5h50 now
follows from dimensional analysis~using instead of the na
ive momentum dimensions the anomalous dimensions g
above! as

F~z,h1!5az2sF~bh1z1/n1!, ~35!

with the exponents

s5
d211h

2~21h!
5

11d

112d
~36!

and

FIG. 2. Effect of the vertexlr]n
2s̃ in a Feynman diagram. The

hatched area represents the boundaryz50. Each short line perpen
dicular to a propagator line indicates a derivative with respect tz.
l

o
e
o-
.

m

-

n

1

n1
5

d211h2h1

2~21h!
512

2e

9
1O~e2!. ~37!

In Eq. ~35! a andb are nonuniversal scale factors while th
scaling functionF is universal.

C. Universal amplitude ratio

We know from the discussion of the mean field profi
and the fluctuation corrections in Sec. IV thatF(z,h1) is
finite and nonzero in both casesh15` andh150. It there-
fore makes sense to define the universal amplitude ratio

D5 lim
z→`

F~z,0!

F~z,`!
5

F~0!

F~`!
. ~38!

A perturbative calculation based on the results of Sec.
yields

F~z,0!

F~z,`!
52

g2~8p!2~d21!/2

4~d23!r3/2 S z

Ar
D e/2

1O~g4!

52
u

6
1O~u2,ue!. ~39!

At the fixed point of the renormalization group this becom

D52
e

9
1O~e2!. ~40!

In the upper critical dimensiond55 the coupling coeffi-
cientu tends to zero under application of the renormalizat
group. The solution of the renormalization group equatio
as in Ref.@19# yields

ū~ l !.
2

3 ln~1/l !
for l→0. ~41!

This gives for the profile

F~z,0!

F~z,`!
.2

2

9 ln~z/z0!
for z→`, ~42!

wherez0 is nonuniversal.
Above five dimensions the amplitude ratio vanishes. T

reason is that the couplingg, which is dangerously irrelevan
for d>5, enters the profile forh150 andh15` in different
ways. Sinceg is responsible for the coupling between th
average density and density correlations@see Eq.~12!# the
modulus of the profile forh150 is an increasing function o
g. For h15`, on the other hand, the profile is a decreas
function ofg @see Eq.~13!#. In this case the main effect ofg
is to suppress deviations from the maximum current den
c̄ in the bulk. Since the ratioF(z,0)/F(z,`) is for largez
proportional to a positive power ofg andg is irrelevant for
d>5 the ratio tends to zero forz→`. For d,5 the renor-
malized counterpart ofg tends to a positive fixed point valu
giving rise to a nonzero value ofD.
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D. Distant wall corrections

Until now the profile near a particle source has been
vestigated assuming that the particles are extracted by a
tant sink located atz5L, L→`. In computer simulations
only comparatively small systems can by studied and cor
tions to the profile~35! due to the distant sink become im
portant. At mean field level the profile that satisfies t
boundary conditionsF(0)5` andF(L)52` is given by

Fmf~z!5
2pr

gL
cotS pz

L D5
2r

gzF12
1

3S pz

L D 2

1••• G . ~43!

The powers of (z/L) occurring in this expansion below th
upper critical dimension can be obtained from a short d
tance expansion~SDE! of the order parameter fields(z) for
z→0 @31–33#. The leading term in this SDE~with the lowest
momentum dimension! is the unit operator 1. Sincess50
due to the Dirichlet boundary condition the next-to-leadi
contribution is the normal derivativer]ns. We therefore ob-
tain

s~r' ,z,t !5A1z2s311A2z~22h!/~21h!r]ns~r' ,t !1•••.
~44!

The power in front of the normal derivative has been de
mined by comparing the anomalous scaling dimensions
the individual terms in Eq.~44!,

s; l ~d211h!/2, r]ns; l ~d132h!/2, z; l 2~21h!. ~45!

The SDE~44! implies that the distant particle sink gives ris
to a correction to the profile proportional toz(22h)/(21h)

5zs for z→0, i.e.,

F~z!5A1z2sF11BS z

L D 2s

1••• G . ~46!

For e50 this form is consistent with the mean field res
~43!.

The amplitudesA1 andB depend on the fixed point valu
of the surface potential, i.e., they take different values
h150 andh15`. Equation~43! shows that forh15` the
~universal! amplitudeB is given by B52p2/31O(e). In
the caseh150 with the boundary conditionsFmf(0)50 and
F(L)52` the mean field profile reads

Fmf~z!52
pr

gL
tanS pz

2L D52
p2r

2gzF S z

L D 2

1••• G . ~47!

To determine the amplitudeB at leading order ine we divide
Fmf(z) by the semi-infinite profile~20! and obtain

Fmf~z!

F [1]~z!
5

3p2

2u
@11O~u,e!#S m2z

Ar
D 2e/2S z

L D 2

1•••.

~48!

At the fixed pointu!5(2/3)e1O(e2) the amplitudeB is
thus given byB59p2/(4e)1O(e0). Note thatB is of the
order 1/e because the semi-infinite profile vanishes at z
loop order.
-
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-
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of
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E. Relation to surface critical phenomena in magnetic systems

Recently the crossover between various surface univer
ity classes~special, ordinary, normal! has been studied fo
systems belonging to the bulk universality class of the Is
model@34#. In this section we briefly discuss the differenc
and analogies between the surface critical behavior of D
and the Ising model.

First of all, there is no special point~and no surface tran
sition @11#! in the system studied in the present paper.
Ising systems it is possible that the symmetry is sponta
ously broken at the surface~due to enhanced couplings be
tween the surface spins! while the bulk is still in the para-
magnetic phase. In DDS, on the other hand, the surfac
coupled to a reservoir, which violates particle conservati
As a consequence, the surface cannot order independ
from the bulk even if the attractive particle interaction
enhanced near the surface. This will be different for a p
ticle conserving surface parallel to the driving force.

In the semi-infinitef4 model ~with zero external field!
near the ordinary or special transition there is no coupl
between even and odd operators~with respect to reflection,
f→2f). Therefore the order parameter profile is const
at the ordinary fixed point. As shown above, this is not tr
for DDS with h150.

Another difference appears in the distant wall correctio
In thef4 model at the normal fixed point the leading term
the SDE of the order parameter field at the surface is not
normal derivative as in Eq.~44! but the stress tensor@30–
33#. This gives rise to the well-known (z/L)d correction to
the order parameter profile.

An especially interesting effect occurs if a small symm
try breaking external surface field is applied to an Ising s
tem ~or f4 model! near the ordinary transition. In this cas
the order parameter profile displays a nonmonotonic cro
over to the asymptotic power law;z2b/n characteristic of
the normal fixed point. For small distancesz from the surface
the profile is proportional to an increasing power ofz with an
exponent that is related to the anomalous dimensionh1 of
the surface field. This power law may be derived by a S
for the order parameter@26,34#. Analogously we may expand
the profile~35! in powers ofh1 to obtain

F~z,h1!5z2s~a11a2h1z1/n11••• !. ~49!

This expansion suggests a possible way to determinen1 by
computer simulations: The difference of two profiles cor
sponding to different but small values ofh1 is proportional to
z2s11/n1 for z→0.

VI. SIMULATION RESULTS

In order to check some of the results presented in
previous section by computer simulations we use the s
dard Monte Carlo technique with Metropolis spin-exchan
jump rates on the two-dimensional, driven Ising lattice g
with attractive interactions@1,2#. The driving force is effec-
tively infinity, i.e., every attempt of a particle to jump in th
direction of the driving force is successful unless the jum
would violate the excluded volume constraint. Jumps in
direction antiparallel to the driving force have zero probab
ity. We use the critical value of the temperature parame
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Tc(`)51.41Tc(0) obtained by Leung@2#. The particle res-
ervoirs at the boundaries are incorporated into the mode
a simple change of the updating algorithm: Wheneve
boundary site is involved in an updating step the occupa
number of this site set equal to a random numberXP$0,1%
which takes the value 1 with propabilitycA ~at the left
boundary! or cB ~at the right boundary!. To avoid unwanted
correlations each realization ofX has to be used for only on
update. In the transverse directions periodic boundary co
tions are imposed.

Figure 3 shows the density profile forcA51.0 andcB

50.5. The system size isL i51000 in the direction parallel to
the driving force andL'5500. At the beginning of each run
an uncorrelated initial state is generated where each la
site is occupied with probability 0.5. Then 105 Monte Carlo
steps~per site! are performed to reach the stationary sta
The profile shown in Fig. 3 has been obtained by averag
over 23105 configurations. The amplitudesA1 andB in Eq.
~46! have been determined by a least square fit with
resultA150.67860.004,B521.660.2. For this fit we have
used various subintervals of 3<z<50. ~The statistical error
in this range is smaller than 0.002.! For larger values ofz
higher powers inz/L become increasingly important. W
have checked that the above values forA1 and B also pro-
vide acceptable fits for smaller systems@(L i ,L')
5(500,397) and (125,250)#.

To determine the amplitude ratioD one first has to find
the critical value ofcA that corresponds to a vanishing su
face field,h150. Figure 4 suggests that this value is close
cA'0.28. For 0.278<cA<0.282 we obtained fits consisten
with A1520.2960.02. One of these fits is depicted in Fig.
together with density profiles for various values ofcA . Each
profile is an average over 106 configurations. To determine
the amplitudeB it would be necessary to obtain a more a
curate estimate for the critical surface density. The simu
tion result for the amplitude ratio readsD520.4360.03,
which can be compared with our one-loop calculation,D'
2e/9520.33 for e53.

FIG. 3. Density profile forcA51.0,cB50.5, where the occupa
tion numbers are represented by the spin variables52n21. The
statistical error is everywhere smaller than60.006. The solid line is
a fit using Eq.~46! with A150.678 andB521.62.
y
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VII. SUMMARY AND OUTLOOK

A particle reservoir coupled to the boundary of a driv
diffusive system maintains the critical density in the bulk
the chemical potential of the reservoir is not below a critic
value. Above this critical value the density profile~as a func-
tion of the distance from the boundary! asymptotically ap-
proaches the bulk density from above, where the decay of
profile follows a power law with an exponents, which can
be expressed in terms of the bulk exponenth. At the critical
value of the boundary chemical potential the density tend
its bulk value from below. If the chemical potential is clos
to ~but above! its critical value the density profile crosses th
critical density at a macroscopic distancez from the bound-
ary. The singular power law dependence of the length scaz
on the boundary chemical potential is characterized by a n
exponentn1, which has been calculated at first order ine
552d.

FIG. 4. Double logarithmic plot of the density profile forcA

50.278, 0.280, 0.282, 0.284, 0.286~from top to bottom! and cB

50.5. The spin variables52n21 has been used. The broken lin
corresponds to the power 0.29z21/3.

FIG. 5. The density profile forcA50.278, 0.279, 0.280, 0.282
0.284, 0.286~from bottom to top! and cB50.5. The occupation
numbers are represented by the spin variables52n21. The solid
curve is a fit using Eq.~46! with A1520.30 andB50.51.
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While in exclusion models without particle-particle attra
tion the density profile is always a monotonic function of t
distance from the boundary we have shown that in criti
DDS stationary profiles can have local maximum poin
This is due to the density correlations in the bulk genera
~for d.1) by the attractive interaction. If the ‘‘temperature
is raised aboveTc(E) these correlations survive as long asT
is finite. Therefore thequalitativeform of the density profile
will not change forTc(E),T,`.

In this paper one out of a multitude of universality class
describing various types of DDS has been considered. Th
universality classes differ in the nature of the noise~particle
conserving or nonconserving!, the presence or absence
quenched disorder and the values of temperaturelike cri
parameters@35#. We plan to extend the analysis present
here to other universality classes. It is straightforward to
rive relations similar to Eq.~36! betweens and the anisot-
ropy exponenth for DDS with quenched disorder. Thi
makes it possible to check the field theoretic predictions
Refs. @36,37,35# for disordered DDS by Monte Carlo simu
lations of the density profile in systems with open boun
aries. Note that in the presence of quenched disorder peri
boundary conditions~in the direction parallel to the driving
force! may lead to unwanted correlations since the partic
are subjected to the same randomness after every pas
through the system.

In order to obtain a numerical estimate for the surfa
exponentn1 or a more accurate value for the amplitude ra
D it is necessary to determine the critical surface den
more accurately. This is an open problem for future simu
tions.
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APPENDIX A: SURFACE DIVERGENCES AT ONE-LOOP
ORDER

In order to determine the renormalization constants
one-loop order one has to evaluate the ultraviolet diverg
Feynman diagrams shown in Fig. 6. The results have to
interpreted in the distribution sense since the calculation
Green functions involves integrations over thez coordinates
of amputated graphs.

The Laplace transform of the first diagram in Fig. 6 rea

2
lg

2 E
0

`

dz e2szE
q' ,v

Ĉq' ,v~z,z!

52
lg

e
Aet

2e/2S t2

Ars
1

4t

3
1

2

3
Ars1O~e!D ,

~A1!

whereĈq' ,v(z,z) is the Gaussian correlator~18! at the Di-
richlet fixed point. The two dimensional Laplace transfor
of the second diagram is given by

FIG. 6. Ultraviolet divergent Feynman diagrams at one-loop
der. A line with ~without! an arrow represents the Gaussian prop
gator ~correlator!. The short line perpendicular to the propagat
line in the diagram~b! indicates a derivative with respect toz8.
~lg!2E
0

`

dz e2szE
0

`

dz8e2s8z8E
q' ,v

Ĉ2q' ,2v~z,z8!]z8Ĝq' ,v~z,z8!5
lg2

2Are
Aet

2e/2S 2s8

s1s8
2

2

3
1O~e!D . ~A2!
Applying the inverse Laplace transformation to Eqs.~A1!
and ~A2! we obtain

@Graph 6~a!#

52
lg

e
Aet

2e/2S t2

Ar
1

4t

3
d~z!1

2

3
Ard8~z!1O~e!D

~A3!
and

@Graph 6~b!#

5
lg2

2Are
Aet

2e/2S 2d8~z8uz!2
2

3
d~z8!d~z!1O~e! D ,

~A4!

where we have introduced the definition
E
0

`

dz8d8~z8uz! f ~z8!52 f 8~z!. ~A5!

The e poles are canceled by the counterterms~25! and
~26! given in Sec. V A. The values of the coefficientsA, B,
F, K, and Z at one-loop order follow from Eqs.~A3! and
~A4! as

A52
1

e
, B52

u

3e
, F52

4

3e
, K5

2

3e
~A6!

and

Z512
u

e
. ~A7!
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