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Surface critical behavior of driven diffusive systems with open boundaries
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Using field theoretic renormalization group methods we study the critical behavior of a driven diffusive
system near a boundary perpendicular to the driving force. The boundary acts as a particle reservoir, which is
necessary to maintain the critical particle density in the bulk. The scaling behavior of correlation and response
functions is governed by a new exponemt, which is related to the anomalous scaling dimension of the
chemical potential of the boundary. The new exponent and a universal amplitude ratio for the density profile
are calculated at first order i=5—d. Some of our results are checked by computer simulations.
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. INTRODUCTION value Cpay, Which maximizes the currerjt under the con-
straintcy=c=cg, i.e.,

In order to study the properties of thermodynamic systems
far from equilibrium physicists have been looking for simple j(Cmad=maxj(c)|ca=c=cg}. @
models that capture the main features of nonequilibrium phe-
nomena. Driven diffusive systeni®DS) introduced by Katz The maximum current density of an Ising lattice gas with
et al.[1] to model fast ionic conductors are characterized byattractive particle-particle interaction equals its critical den-
a particle conserving dynamics and a stationary state, whichity 1/2. The low temperature phase of this system with open
does not satisfy detailed balance. Their study has led to thioundaries in two dimensions has been studied by Boal.
discovery of the connection between the validity of a conserf10].
vation law and the existence of long-range spatial correla- In the present paper field theoretic renormalization group
tions in nonequilibrium steady states. methods are employed to investigate the effects of open

A simple microscopic realization of DDS is an Ising lat- boundaries on DDS at the critical poift(E). We assume
tice gas with attractive nearest neighbor interaction and athat a plane particle sourcgé perpendicular to the driving
external driving forceE that prefers particle jumps in the force is located at the left boundary of the syst@wordinate
direction parallel toE [1,2]. The strength of the particle at- z=0) and impose periodic boundary conditions in the trans-
traction can be varied by a temperaturelike paramgtde-  verse directions. The effect of the particle source is to sup-
low a critical valueT(E) particles are separated in the sta- press density fluctuations and to maintain a constant density
tionary state into regions of high and low densities, wherec, atz=0. The particles are extracted from the system when
the interfaces are oriented parallel to the driving fotf@  they reach a sinlB located az=L (L—x).
E+#0). The phase transition &t(E) is second order. For an It is well known that in physical systems with long ranged
infinite driving force particle jumps in the direction antipar- correlations the influence of a surface extends far into the
allel to E are suppressed. In this case the phase transitiobulk. The critical behavior near a boundary is governed by
occurs afl ()~ 1.41T(0), whereT(0) is the critical tem-  universal scaling laws with critical exponents that gen-
perature of the two dimensional Ising modl2]. The critical  era) cannot be expressed in terms of bulk exponéatse-
behavior of this system has been extensively studied byiew is given in Ref[11]). The applicability of renormaliza-
Monte Carlo simulations and renormalization group methodsion group methods to investigate both stdtid—15 and
[3]. (For a recent review sdd].) dynamic[16-1§ surface universality classes is well estab-

In most studies of DDS periodic boundary conditions inlished. Especially encouraging are the results of Re$]
all directions are imposed to avoid surface effects. In thiswhere this technique has been used to obtain an approximate
case the particles are driven along a ring or torus. In morgrofile for one-dimensional DDS with open boundaries. It
realistic models particles are fed into the system at one sidirned out that the profile calculated by renormalization
and extracted at the other. The asymmetric exclusion modejroup improved perturbation theofsit one-loop orderwas
[5] is a DDS with hard core repulsiofbut without nearest in good agreement with the exact result of Héf.
neighbor interaction, i.e.JT=«). The density profile in a In the next section the semi-infinite extension of the field
one-dimensional exclusion model with a particle source andheoretic model for DDS at the critical poifintroduced in
a sink was investigated numerically by Kr{g]. His results  [3]) is presented. Above the upper critical dimensths=5
were later confirmed and generalized by exact calculationsf this model fluctuations around the mean field profile can
[7-9]. An important result of these works is the “maximum be treated by naive perturbation theory. The mean field pro-
current principle,” which states the following: If the system file and Gaussian fluctuations fal>5 are considered in
is placed between two particle reservoltsandB (with the ~ some detail in Secs. Il and IV since the results of this analy-
respective densities, andcg with c,=cg) and the driving  sis remain qualitatively valid fod<5. In Sec. V the renor-
force points fromA to B, then the bulk density takes the malization group is used to obtain the scaling behavior of
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Green functions and the density profile below five dimen- _ s ~
sions. Section VIl contains a discussion. jb[S-S]Zf dtJVd r{sds+N[(A;s)(A,s)
Il. MODEL +7(V,5)(V, ) +p(95)(95)
The analysis in the present paper is based on the field + %g(a‘g)SZ—ha“E—(VLE)Z]}, (4

theoretic model introduced by Janssen and Schmittrhahn
to study the critical behavior of a diffusive system with awhere)\g~—E02, and’s is a Martin-Siggia-Rose response

single conserved density subjepted to an external (.jriv.ingield [25]. While the functional(4) allows us to calculate
force..The model can be written in the form of the continuity response and correlation functions for an infinite bulk system
equation the influence of the boundaries has to be modeled by addi-
) _ tional surface contributions. If the boundary is perpendicular
stV j, +dj=0, (2 tothe driving force the region of integration in Ed) is the
half spaceV={(r, ,z)|r, e RY"1,z=0}, and the surface is
where s(r,t) =c(r,t) — ¢ denotes the deviation of the con- defined byz=0. Omitting irrelevant and redundant terms

centration from its averagéulk) valuec, andj, andj are [19] the surface functional reads

the respective components of the current perpendicular and

parallel to the drivi_ng force. The explipit expression for t_he Js[g,S]ZJ dtf dd-1r n

current can be motivated by the following symmetry require- Y

ments [4]: (i) isotropy with respect to the e - - -
(d—1)-dimensional transverse subspag#), invariance of X (CsS—CS?—CySA, S+ 3 gs5s°—hgs).  (5)

the equation of motion under reversal of the driving force

(E<~»—E) and particle-hole exchangé‘charge conjuga- Response and correlation functions can now be calculated by
tion,” s— —s), (iii) invariance under force reversal and re- functional integration with the weight exp(7), where 7

flection inr (the coordinate parallel to the forceA con-  =Jp+ Js.

tinuum model satisfyingi)—(iii) describes, for instance, the

long time and large distance behavior of a driven Ising lattice IIl. EQUATION OF MOTION AND MEAN FIELD

gas at its critical density 1/2. Since the current in this system APPROXIMATION

is at its maximum value for half filling one may use the

maximum current principldin a system with open bound- ~ An exact equation for the stationary profilé(z)
aries to adjust the bulk density to the critical value. =(s(r,t)) follows from the invariance of the generating

Keeping only terms that are consistent with the aboveunctional
conditions(i)—(iii ) and relevant or marginal in the renormal-
ization group sense the current may be writtepon rescal-

ing of s) in the form Z[j"];jl"ll]:f D['s,s]ex] — J[s,5]— Tl 5,861+ (3,5)

i =V, [-N(1s—A,8)+{], (33 +(3,8)+(J1,85) +(J1,59) ] (6)
. 2 under an infinitesimal shift of the field. In Eq. (6) sq(r,)
Jj=E(o0t028%) = \pdjs, (3D) =s(r, ,0) denotes the field at the surface and the abbrevia-
tions
where( is a Gaussian random force with the correlation
(DL 1))y =208(r—r")8(t—t"). (30) (3,§)=f dtfvddrj"é (7)

The third order derivative in E¢3a) has to be kept because gng
the coefficientr of the first order derivative vanishes at the
critical point(transverse phase transitif8)). The coefficient
oo may be interpreted as the conductivity of the system at (Jl,ss)zf dtf d9= %, J;ss (8)
the maximum current density. Deviations fromc due to w
fluctuations or a nonconstant density profile decrease the cur- ) . ~ o~ o
rent. This effect is modeled by the terw,s? in Eq. (3b). have been used_. The invariancez$fl,J;J;,J,] implies the
The coefficientr measures the deviation of the temperaturefduation of motion
parameter from its critical value andtakes into account the o
anisotropy of the diffusion constant. Even if the diffusion  S+A[(A, —7)A, 5= d|(pdjs+3095°) +2A,5]=],
constant is isotropicg=1) in the original Langevin equa- (©)
tion it becomes anisotropic under coarse graining. ) . o ] ]

For the subsequent field theoretic analysis it is convenienihich holds after insertion into averages. The invariance of
to recast the model in the form of the dynamic functionalZ[J,J;J,,J,] under a shift of the surface fiekd leads to the
[20-24,3 equation of motion
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0—0s _— 1. The Fourier transform of the Gaussian correlation func-
— panS— Ts§+ C8;— 208~ CoA Sc—hgth= 1Ty, tion
(10 C(r,,z,z";t)=(s(r, ,z;t)s(0,2";0))g 17
which fixes the boundary condition. Taking the average on
both sides of Eq(9) for vanishing sourced=J=3,=J, & the Dirichlet fixed point, =< can be derived from the
=0 one obtains Gaussian part of the dynamic functional. This calculation

yields
IApa,2(2)+39[P(2)*+C(2)]}=0 (11

A~ " 2 * Ta " A "o
or, sinced,,,,=0 due to the definition o$, Cq, .0(z,2')=2A0q] fo dZ'Gq, w(2,2")Gq ,-u(Z",2")

: 9 2ngl
'(2)+ 5 [@(2)7+C(2)~Coud=0. (12 __ kqilm[%'w(z’z,”’ 19

w

The functionC(z) ={([s(r, ,z;t) — ®(z)]?) describes density
fluctuations at the distancefrom the surface an€,,, de-
notes its value fog— .

In the mean field approximation one neglects the correla-

where Inj - - -] denotes the imaginary part. The equal-time
correlation function at the point ( ,z) is given by

tion functionC(z) and obtains for the profile C(Z)ZJ C;q o(2,2)
q.@ -
g -1
q)mf(Z):(Do 1+ —‘I)OZ> . (13) 1
2 = Cou— == (872 p) @2 (19
2\p

Dimensional analysis shows that the momentum dimension

of the coupling coefficieng is given by[g]=(5—d)/2, and i, Cour~ A9~ Y\p (whereA is a cutoff wave number
the mean field approximation breaks down below the upper \ya can now use Eq$12) and(19) to compute the fluc-

critical dimensiond.=5. Ford>5 corrections to the mean yation correction to the constant mean field profilg,(z)
field profile can be obtained by na perturbation theory. At =0. At first order ing we get

lowest order it is sufficient to calculate the perturbation
C(2) — Cpuk in Eqg. (12) by a Gaussian approximation. g(877)(d1)/2( 7 )(d3)/2

oll(z)=—-"F———| —
IV. CORRECTIONS TO THE MEAN FIELD PROFILE 2(d=3)p \p
One can easily check by dimensional analysis that higher

FOR d>5
In the simplest case®,(z)=Po=hs=0, the Fourier o qer  corrections to  the profile  decay as
transform(with respect tor;, andt) of the Gaussian propa- (D[Zn+1](Z)lq)[1](z)~2—n(d—5)/2 (up to cutoff dependent

gator terms, which may change the amplitude of the leading term
proportional toz™(¢=3)72),

In the limit ¢c,hg— <0 (with hg/c=:h; fixed) the boundary
value of the mean field profile is given b$,=h;. This
follows from Egs.(10) and (13). For ®,>0 the mean field

(20

G(r, ,z,z;t)=(s(r, ,z;1)s(0,2";0)), (14)

is given by[19]

A 1 o profile decays asymptotically ab(z)=2p/(g2), and the
Gy, Ww(2,2)= e~ xlz=Z'lp fluctuation correction~z~(4=%)2 can be neglected for

2)\\/;" —oo (d>5). However, ifh; is positive but small the profile

e ®(2) is negative forz<{, where {={(h;) is a crossover

N K—C Pef K(z+z'>/\zl (15) length. The dependence of the profile on the boundary

K+C/\/; chemical potentiah; is depicted qualitatively in Fig. 1. The

. crossover lengtld tends to infinity forh,—0". To estimate
with ¢ for smallh; we equate the mean field profile,«(¢) with

- 2 the fluctuation terny ~(@~%)2 and obtain

k= T”qu(ﬂ'qf) (16 {~h; 209 21)

The parametec occurring in the surface functiongl; and for h«—0* d>5
in the propagator describeg$or c>0) the suppression of ! ' .

density fluctuati by th el ir at the bound In the language of semi-infinite magnetic systems the case
ensily fluctuations by the particle reservorr at the oun_aryhl:oo corresponds to the normal transition amgd=0 is the
Since the momentum dimension ofis one the asymptotic

. L X ) ordinary point. A length scale similar t9 has already been
scaling behavior is governed by the fixed pomt=co. At found in magnetic systems at the ordinary transiti@g].

this fixed point the fields ands satisfy the Dirichlet bound- There the length scal¢ characterizes the magnetization pro-
ary conditionss;=s,=0. file induced by a small magnetic surface field.
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where ég'i)]w(z,z’) denotes the propagatét5) for c=oo.
This shows that the leading order terms in an expansion in
powers ofc™! can be studied in the framework of a field
theory with Dirichlet boundary conditions after replacing in
expectation values

N ¢ e 'S¢—C 1pdps. (24)
o -_——— = = - = Analogously insertions of the surface fiety have to be
- replaced (at leading order by the normal derivative
-1
C ~pdyS.

Since a boundary breaks the translational invariance of
the system it gives rise to new divergences in the perturba-
tion series that are located at the surfice, proportional to
8(2)]. These surface divergences have to be subtracted by
= appropriate counter terms added to the dynamic functighal

In the Appendix it is shown that the required counter terms
FIG. 1. Sketch of the profileb(z) for hy=« (dotted, h;>0  Khave the form

finite (solid curve, andh;=0 (dashedl For h;<0 the density in
the bulk stays below its critical value indicated by the horizontal

line. jbct[E,S] = f dtfvddr N pr(Z— 1)((9”5)((9“5)

V. RENORMALIZATION GROUP ANALYSIS +pr A g “AT24)S] (25)

A. Renormalization .
to remove bulk divergences and

The naive perturbation theory described in the previous
section breaks down below the upper critical dimensign ~ _ _ e
=5. The renormalization group allows us to improve the jsc{s's]:f dtLVdd 'r N prPAgr " K(pdis)
perturbation expansion by a partial resummation.

_Since the individ_ual terms of th_e perturbation series con- +B(pdps)ss+ pglAeg,u‘fF (pdps)]  (26)
tain for d=d,, ultraviolet divergent integrals a regularization
prescription is required to obtain well-defined expressiongo cancele poles located at the surface. The renormalization
for the otherwise infinite integrals. Here we use the dimenparameter#\, B, F, K are calculated at one-loop order with
sional regularization methao@nalytic continuation of the in- the result
tegrals as functions ofl). The remaining poles ire=d;
—d are then absorbed into reparametrizations of the coupling
coefficients and the fields. In the field theory for the bulk
model(without a surfacka renormalization of the parameter
p=Zpg is sufficient to cancel the ultraviolet divergences atThe first term in%, renormalizes the diffusion coefficiept

every order of the perturbation thediy]. At one-loop order  The bulk counterterm proportional @S corresponds to a
the renormalization factor is given by renormalization of the bulk currefigg]

1 u 4 2
A=—— _
€

u _ _ 12 —€ 2
Z=1-—+0(u?), u=Ag%:*u"5 (22 h=hr=pr “Agu AT (28

The surface counterterms proportional to the redundant

, _operators fd,s)ss and pd?s are equivalent to a multiplica-
whereu is an external momentum scale and the geometrlca?p £3nS)Ss Pon d P

factor A= (3/4)(47) Y2 (3— €)/2]T (1+ €/2)/T (2 tive renormalization of the surface response fieftis,
—€/2) has been introduced for convenien¢Ehe indexR ~ __p L~
indicates renormalized quantitigs. [pdnSlr=21 "“pdns. (29

In order to investigate the scaling behavior of response e ~
functions near the boundary one has to calculate Green fun&r the semi-infinite™ model (where the countertermds
tions with insertions of the surface response figld Since is absert this has been ShOV.V” in Rgi29). In the present
the Gaussian propagatéi5) vanishes at the Dirichlet fixed case both counterterms contribute to the renormalization fac-
point ¢, == it is necessary to go to higher ordersan® to tor Z,. In Fig. 2 it is shown that an insertion of the operator

2"’ . .
obtain nontrivial result§11,12,27. At first order inc™* the ~ PdnS_into a Feynman diagram has the same effect as
propagator becomg$or z' =0) (pnS)Ss -

At one-loop order one gets

u

R 1 ~(D) , ~1/2 2
qu,w(z,0)=EpaZ,qu’w(z,z My—ot -+, (23 Z,7°=1-B—-uK+O(u9)=1- 3¢

+0(u?). (30
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1_d—1+77—7]1_1 2¢
g v, 22+m) T 9
N N

+0(€?). (37

In Eq. (35) a andb are nonuniversal scale factors while the

scaling functionF is universal.
FIG. 2. Effect of the vertex\paﬁE in a Feynman diagram. The 9

hatched area represents the boundary). Each short line perpen- _ ) _
dicular to a propagator line indicates a derivative with respeet to C. Universal amplitude ratio

We know from the discussion of the mean field profile
The relation between the redundant surface couplihgse  gnd the fluctuation corrections in Sec. IV thd(z,h,) is
B, K) andZ, can be extended to higher ordersunin a finite and nonzero in both caskg=x andh;=0. It there-
similar way as in Reff29]. The last counter term iffgithat  fore makes sense to define the universal amplitude ratio
couples topd,s renormalizes the surface chemical potential

Do ®(z,0) F(0) -
hy=2; YA[hylr—pr*AguFr). (31) =M ) F(e) 38
B. Scaling A perturbative calculation based on the results of Sec. IV
With the renormalizations at hand we are in a position taYields
determine the scaling behavior of Green functions and the -
density profile. For this purpose we need the anomalous mo- d(z,0) 92(877)‘(("1)’2{ z\° .
mentum dimensions of the fields and coupling coefficients. D (z,) = 4(d—3)p32 \T +0(g")
At the fixed pointu, = (2/3)e+ O(€?) of the renormalization ' p p
group the couplingg andh; scale as u
=——+0(u?,ue). (39
p~|_2”, h1~p—1/4|(d—1—771)/2~|(d—1+ n— 7;1)/2’ (32) 6

wherel is a flow parameter ang and 5, are the respective At the fixed point of the renormalization group this becomes
fixed point values of the Wilson functions

€
1 dinp| 1 o a3 D=—§+O(ez). (40)
y(u)= 247 a0 O—EU (u9), (339
In the upper critical dimensiod=5 the coupling coeffi-
_dinzy| — 2 2 cientu tends to zero under application of the renormalization
vi(U)=p du |~ N §u+0(u )- (33D group. The solution of the renormalization group equations
0 as in Ref[19] yields

The derivatives are calculated at fixed bare parameters. From

this one finds — 2
U(|)—W for 1—0. (41)
S (34
773 Mg € This gives for the profile
where the expression fon holds at every order of the ®(z,0) 2
expansion[3]. The scaling dimensions of the coordinates Bz 9z for z—oo, (42
ro~171, r~p*~2~1"*" and the bulk fields's ’ 0
~ U4 (d+:l,)/2~|(d+3+ /2 S~ p~ U4 (d=1)/2_|(d=1+n)/2 ) )
P . ’ P o wherez, is nonuniversal.
may E’llsci be derived from the renormalization group equa- Above five dimensions the amplitude ratio vanishes. The
tions[3,4]. j

. . ' L reason is that the couplirgy which is dangerously irrelevant
The scaling form of the density profile far=h=0 now for d=5, enters the profile fan, =0 andh; = in different
follows from dimensional analysi@ising instead of the na- ! ; ) .
ways. Sinceg is responsible for the coupling between the

ive momentum dimensions the anomalous dimensions glvegverage density and density correlatigsse Eq.(12)] the

above as modulus of the profile foh; =0 is an increasing function of
®(z,hy)=az "F(bh,z"), 35 9 For h,=«, on the other hand, the profile is a decreasing
function ofg [see Eq(13)]. In this case the main effect of
with the exponents is to suppress deviations from the maximum current density

¢ in the bulk. Since the ratid(z,0)/®(z,) is for largez
proportional to a positive power @f andg is irrelevant for
d=5 the ratio tends to zero fa—«. For d<5 the renor-
malized counterpart af tends to a positive fixed point value
and giving rise to a nonzero value @.

B d—l+7]_ 1+d
2(2+7p) 11-d

o

(36)
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D. Distant wall corrections E. Relation to surface critical phenomena in magnetic systems

Until now the profile near a particle source has been in- Recently the crossover between various surface universal-
vestigated assuming that the particles are extracted by a diity classes(special, ordinary, normalhas been studied for
tant sink located ak=L, L—<. In computer simulations systems belonging to the bulk universality class of the Ising
only comparatively small systems can by studied and correanodel[34]. In this section we briefly discuss the differences
tions to the profile(35) due to the distant sink become im- and analogies between the surface critical behavior of DDS

portant. At mean field level the profile that satisfies theand the Ising model.

boundary conditionsb(0)=o and®(L)= —x is given by

2mp wZ\ 2p 1/ 7wz
——cotl —|=—|1-5| —
gL L gz 3\ L

2

®p(2)= o

. (43

First of all, there is no special poitand no surface tran-
sition [11]) in the system studied in the present paper. In
Ising systems it is possible that the symmetry is spontane-
ously broken at the surfagelue to enhanced couplings be-
tween the surface spinsvhile the bulk is still in the para-

The powers of /L) occurring in this expansion below the magnetic phase. In DDS, on the other hand, the surface is
upper critical dimension can be obtained from a short discoupled to a reservoir, which violates particle conservation.

tance expansiofSDE) of the order parameter fiels(z) for

z—0[31-33. The leading term in this SDB&vith the lowest

momentum dimensignis the unit operator 1. Sincg,=0

As a consequence, the surface cannot order independently
from the bulk even if the attractive particle interaction is
enhanced near the surface. This will be different for a par-

due to the Dirichlet boundary condition the next-to-leadingticle conserving surface parallel to the driving force.

contribution is the normal derivatived,s. We therefore ob-

tain

S(ry,z,t)=A1Z "X 1+Az% P25 pg (1 )+
(44)

The power in front of the normal derivative has been deter-

In the semi-infinite¢* model (with zero external field
near the ordinary or special transition there is no coupling
between even and odd operatéwdth respect to reflection,
¢— — ¢). Therefore the order parameter profile is constant
at the ordinary fixed point. As shown above, this is not true
for DDS with h;=0.

Another difference appears in the distant wall correction.

mined by comparing the anomalous scaling dimensions ofn the ¢* model at the normal fixed point the leading term in

the individual terms in Eq(44),

S~ (@152 5 o |([@+3=mI2 5 |=(2%m) (45

The SDE(44) implies that the distant particle sink gives rise

to a correction to the profile proportional &2~ 7/*+7)
=z for z—0, i.e,,

20

D(z)=A;z ° +e (46)

1+8( 2
L

the SDE of the order parameter field at the surface is not the
normal derivative as in Eq44) but the stress tens¢B0—

33). This gives rise to the well-knowrz(L)? correction to

the order parameter profile.

An especially interesting effect occurs if a small symme-
try breaking external surface field is applied to an Ising sys-
tem (or ¢* mode) near the ordinary transition. In this case
the order parameter profile displays a honmonotonic cross-
over to the asymptotic power lawz #'* characteristic of
the normal fixed point. For small distance&om the surface
the profile is proportional to an increasing poweratith an

For e=0 this form is consistent with the mean field result exponent that is related to the anomalous dimensjgrof

(43).

the surface field. This power law may be derived by a SDE

The amplitudes\; andB depend on the fixed point value for the order paramet¢26,34. Analogously we may expand
of the surface potential, i.e., they take different values forthe profile(35) in powers ofh, to obtain

h,=0 andh;=. Equation(43) shows that forh;=« the
(universal amplitudeB is given by B=—7%/3+0(e). In
the caséh; =0 with the boundary condition®,«(0)=0 and
®(L)= — the mean field profile reads

mp_ [wz\  wPp[(z)? A
g—Lta Z——E E + .- (7)

To determine the amplitud® at leading order ire we divide
® «(2) by the semi-infinite profild20) and obtain

22+
o) e

q)mf(z): -

Pp(2) 372 piz)
(I)[l](z) = W[1+O(U,6)]<Tp)

(48)

At the fixed pointu,=(2/3)e+O(€?) the amplitudeB is
thus given byB=97?/(4€)+ O(€°). Note thatB is of the

®(z,h)) =z (a;+ah;z""1+ - . .). (49)
This expansion suggests a possible way to determiniey
computer simulations: The difference of two profiles corre-
sponding to different but small valuesIof is proportional to

z "1 for z—0.

VI. SIMULATION RESULTS

In order to check some of the results presented in the
previous section by computer simulations we use the stan-
dard Monte Carlo technique with Metropolis spin-exchange
jump rates on the two-dimensional, driven Ising lattice gas
with attractive interaction§l,2]. The driving force is effec-
tively infinity, i.e., every attempt of a particle to jump in the
direction of the driving force is successful unless the jump
would violate the excluded volume constraint. Jumps in the

order 1k because the semi-infinite profile vanishes at zerdlirection antiparallel to the driving force have zero probabil-

loop order.

ity. We use the critical value of the temperature parameter
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0 200 400 600 800 1000
z z
FIG. 3. Density profile foc,=1.0,cg=0.5, where the occupa- FIG. 4. Double logarithmic plot of the density profile fop

tion numbers are represented by the spin variabte2n—1. The =0.278, 0.280, 0.282, 0.284, 0.28Bom top to bottom and cg
statistical error is everywhere smaller thai®.006. The solid lineis  =0.5. The spin variable=2n—1 has been used. The broken line

a fit using Eq.(46) with A;=0.678 andB=—1.62. corresponds to the power 029",

T.(0)=1.41T.(0) obtained by Leund2]. The particle res- VIl. SUMMARY AND OUTLOOK
ervqirs at the boundaries are ingorporateq intf) the model by A particle reservoir coupled to the boundary of a driven
a simple C_har.‘g? of the _updatmg "’?'go”thm- Whenever_ Jiffusive system maintains the critical density in the bulk if
boundary site is involved in an updating step the occupation,e chemical potential of the reservoir is not below a critical
number of this site set equal to a random numXer{0,1}  \51ye. Above this critical value the density profites a func-
which takes the value 1 with propabilitys (at the left  {ion of the distance from the boundargsymptotically ap-
boundary or cg (at the right boundaty To avoid unwanted proaches the bulk density from above, where the decay of the
correlations each realization ¥fhas to be used for only one profile follows a power law with an exponent, which can
update. In the transverse directions periodic boundary condbe expressed in terms of the bulk exponentt the critical
tions are imposed. value of the boundary chemical potential the density tends to
Figure 3 shows the density profile far,=1.0 andcg its bulk value from below. If the chemical potential is close
=0.5. The system size ls|=1000 in the direction parallel to to (but abovgits critical value the density profile crosses the
the driving force and., =500. At the beginning of each run, critical density at a macroscopic distangérom the bound-
an uncorrelated initial state is generated where each latticary. The singular power law dependence of the length scale
site is occupied with probability 0.5. Then%Monte Carlo  on the boundary chemical potential is characterized by a new
steps(per site are performed to reach the stationary state €xponentry, which has been calculated at first orderen
The profile shown in Fig. 3 has been obtained by averaging=>—d.
over 2x 10° configurations. The amplitudes; andB in Eq.

(46) have been determined by a least square fit with the 0
resultA;=0.678+0.004,B= — 1.6+ 0.2. For this fit we have

i i isti -0.02¢
used various subintervals of<50. (The statistical error ..«w'-%

in this range is smaller than 0.00Zor larger values of
higher powers inz/L become increasingly important. We
have checked that the above values AgrandB also pro-  — _g ggl s &'
vide acceptable fits for smaller systemf(L;,L,) N :
=(500,397) and (125,250) L .08}
To determine the amplitude ratid one first has to find
the critical value ofc, that corresponds to a vanishing sur- 0.1y,
face field,h;=0. Figure 4 suggests that this value is close to
c,~0.28. For 0.27&c,=<0.282 we obtained fits consistent
with A; = —0.29+0.02. One of these fits is depicted in Fig. 5 _ ]
together with density profiles for various valuescaf. Each ' . . . .
profile is an average over 4@onfigurations. To determine 200 400 600 800
the amplitudeB it would be necessary to obtain a more ac- <
curate estimate for the critical surface density. The simula- FiG. 5. The density profile foc,=0.278, 0.279, 0.280, 0.282,
tion result for the amplitude ratio read3= —0.43+0.03,  0.284, 0.286(from bottom to top and cg=0.5. The occupation
which can be compared with our one-loop calculatibis  numbers are represented by the spin variabte2n— 1. The solid
—€/9=—0.33 fore=3. curve is a fit using Eq(46) with A;=—0.30 andB=0.51.
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While in exclusion models without particle-particle attrac-
tion the density profile is always a monotonic function of the
distance from the boundary we have shown that in critical
DDS stationary profiles can have local maximum points.
This is due to the density correlations in the bulk generated
(for d>1) by the attractive interaction. If the “temperature” @ (b)

@s r_ai_sed abovd .(E) these_ C(_)rrelations survive as |0n9-5‘3 FIG. 6. Ultraviolet divergent Feynman diagrams at one-loop or-
|s.f|n|te. Therefore theualitativeform of the density profile  ger A line with (without) an arrow represents the Gaussian propa-
will not change forT(E) <T<°. gator (correlatoy. The short line perpendicular to the propagator

In this paper one out of a multitude of universality classesine in the diagram(b) indicates a derivative with respect 6.
describing various types of DDS has been considered. These

universality classes differ in the nature of the noigarticle ~ (Disorder and Large Fluctuatiofjsof the Deutsche Fors-
conserving or nonconservingthe presence or absence of chungsgemeinschaft.

quenched disorder and the values of temperaturelike critical

parameterg35]. We plan to extend the analysis presented APPENDIX A: SURFACE DIVERGENCES AT ONE-LOOP
here to other universality classes. It is straightforward to de- ORDER

rive relations similar to Eq(36) betweeno and the anisot-
ropy exponentn for DDS with quenched disorder. This
makes it possible to check the field theoretic predictions og
Refs.[36,37,39 for disordered DDS by Monte Carlo simu-

In order to determine the renormalization constants at
ne-loop order one has to evaluate the ultraviolet divergent
eynman diagrams shown in Fig. 6. The results have to be
lations of the density profile in systems with open boung-nterpreted in the distribution sense since the calculation of

aries. Note that in the presence of quenched disorder periodi reen functlé)ns |n\r/]olve5 integrations over theoordinates
boundary conditiongin the direction parallel to the driving of amputated graphs. ' : -
force) may lead to unwanted correlations since the particles The Laplace transform of the first diagram in Fig. 6 reads
are subjected to the same randomness after every passage Ag (= R
through the system. -—| dz e‘szf Cq, 0(2,2)

q, o

In order to obtain a numerical estimate for the surface 2 Jo
exponentr, or a more accurate value for the amplitude ratio

o , " , \g 47 2
D it is necessary to determine the critical surface density =— —A 7 —+ —+=ps+0(e) |,
more accurately. This is an open problem for future simula- € Jps 3 3

tions. (A1)
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chungsbereich 23TUnordnung und GroRe Fluktuationen of the second diagram is given by

o w . R . A2 2s’ 2
(xg)zf dzeﬂf dz'e*“f C g —u(22)3,Gq (2.2)= J AETEIZ(———-FO(E)). (A2)
0 0 q .0 a 2\/55 s+s’ 3

Applying the inverse Laplace transformation to E¢al) %
and (A2) we obtain fo dz'6'(z'[2)f(2') = —1'(2). (A5)
[Graph §a)]
2 4 5 The € poles are canceled by the counterter(@s) and
AN T 7 , (26) given in Sec. V A. The values of the coefficierf{s B,
ST AT \/_;JF 3ot 5\/;5 (2)+0C(e) F, K, andZ at one-loop order follow from EqgA3) and
A3 (A4) as
and (A3)
[Graph &b)] A= ! B= . F= 4 K= 2 A6
P e BTz Fooge Koz WO
A A f’2<25’( '2) 25( ")d(z) +0O( ))
= T Z'|2)—568(2')4(z €|,
2\/;6 3 and
(A4) u
where we have introduced the definition z=1- € (A7)
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